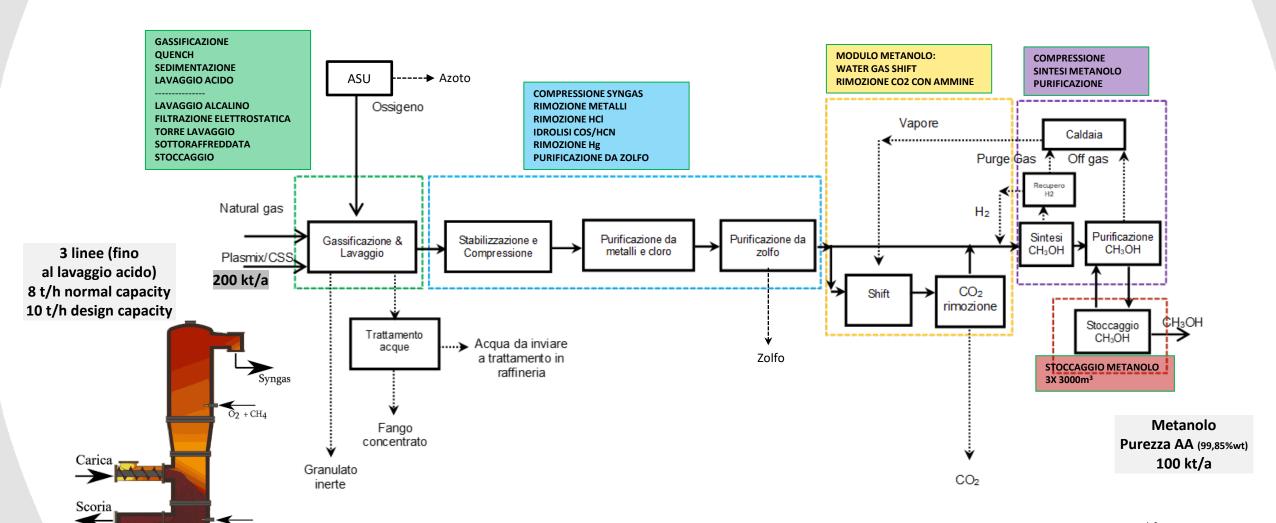

Firenze, 8 giugno 2022

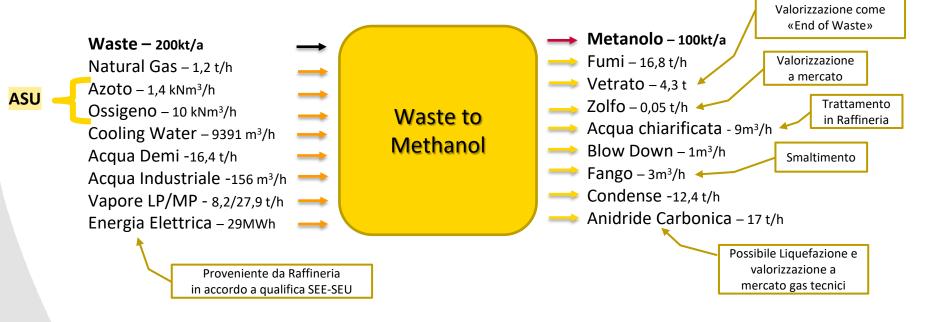
Introduzione



- Il progetto Waste-to-Chemical si basa su una tecnologia di conversione di rifiuti in chemicals o combustibili, prevalentemente Metanolo e/o Idrogeno.
- La tecnologia e licenziata da **Nexchem/Myrechemical** (gruppo Maire-Tecnimont) su know-how giapponese JFE Engineering (Sezione Gassificazione).
- La proposta prevede la produzione di metanolo a partire da:
 - PLASMIX, ovvero rifiuti plastici anche definiti come "scarto di fine nastro"
 - CSS (Combustibile Solido Secondario). Rifiuto combustibile non pericoloso ammissibile ad operazioni di recupero.
- Il processo di trasformazione del rifiuto in metanolo e/o idrogeno è realizzato mediante produzione di un Syngas (CO, H2, CO2), seguito da una serie di stadi di conversione e purificazione volti all'ottenimento del corretto rapporto H2/CO ed alla rimozione di inquinanti residui (metalli, cloro, zolfo, ecc.).

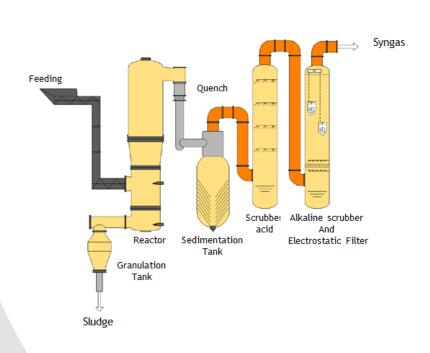
Il Waste-to-Chemicals nel ciclo dei rifiuti solidi urbani

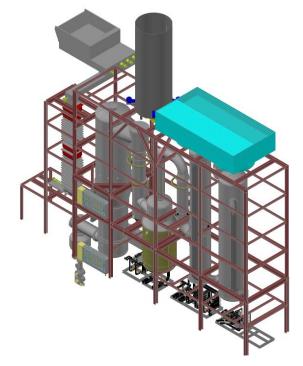
Waste to Methanol – Schema a blocchi semplificato



Waste to Methanol – alimentazione e prodotti principali

- Plasmix: rifiuto plastico
- CSS: prodotto derivato da rifiuti solidi urbani (CER 191210 vedi D.lgs. 205/2010)


Smaltimento o

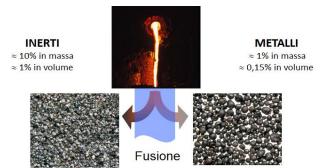


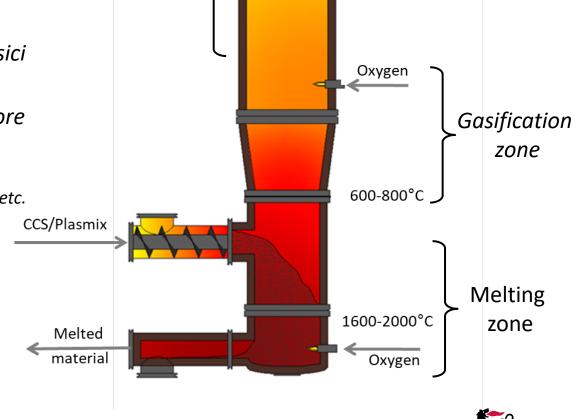
Metanolo	AA Grade O-M-232N specs
Metanolo, wt% min	99.85
Acetone, wt% max	0.002
Acidita' (acido acetico), wt% max	0.003
Appearance	No opalescence, suspended matter, and sediment
Carbonisable impurities, colore Pt-Co max	No. 30
Colour, Pt-Co max	No. 5
Distillation range at 1 atm, max	1.0°C, including 64.6 +/- 0.1°C
Etanolo, wt% max	0.001
Non-volatili , mg/100ml max	10
Odore	Characteristic, non-residual
Permanganate fade time	No discharge of colour in 30'
Specific weight at 20/20°C, max	0.7928
H2O, wt% max	0.10

Il cuore della tecnologia – Sezione di conversione rifiuti ad alta temperature 1/2

- I rifiuti CSS/Plasmix sono convertiti a gas di sintesi (Syngas) mediante gassificazione ad alta temperatura in presenza di ossigeno.
- Il Syngas prodotto viene quindi **purificato** e **rettificato** al corretto rapporto stechiometrico dei suoi componenti principali (H2, CO, CO2), per la successiva reazione di sintesi metanolo, mediante WGS (Water Gas Shift, CO + $H_2O = CO_2 + H_2$).
- Lo step di purificazione e la sintesi del metanolo si basano su tecnologie mature (TRL > 9) e licenziate.

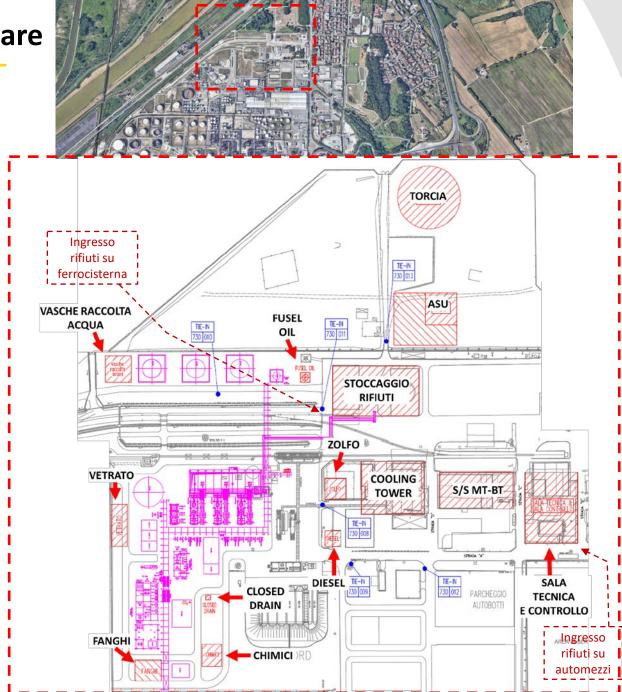
2/2


Syngas


1100°C

Il cuore della tecnologia – Sezione di conversione rifiuti ad alta temperature

- Le alte temperature assicurano la decomposizione completa delle molecole di carbonio a catena lunga.
- Tutta la frazione combustibile passa in fase gassosa senza formazione di «tar»
- Raffreddamento rapido (Quenching) a 1100 °C 90 °C, fissa la composizione chimica evitando la formazione di composti tossici (e.g. diossine e furani).
- I materiali inerti vengono fusi nella sezione inferiore del reattore (1600-2000°C) e scaricati come granulati vetrosi inerti.
 - <u>Applicazioni possibili:</u> piastrelle sinterizzate, materiale base per cementi, blocchi per pavimentazione ad incastro, materiale di riempimento stradale, etc.



Stabilization

zone

Waste to Methanol – Planimetria preliminare

- L'impianto si articola in tre sezioni:
 - Ricevimento e stoccaggio rifiuti e prodotto nell'area di raffineria
 - La capacità di stoccaggio garantisce 8 giorni di produzione in continuo.
 - Stoccaggio metanolo su 3 serbatoi a tetto flottante per MeOH e un serbatoio a tetto fisso per MeOH off-specs.
 - Ingresso rifiuti via treno (1/g) ed automezzi (ca. 16/g)
 - Spedizione prodotto via treno tramite pensiline di carico esistenti.
 - Spedizione prodotto via nave.
 - **Processo** articolato in quattro sezioni:
 - Gassificazione, lavaggio e stabilizzazione syngas;
 - Compressione e purificazione syngas;
 - Condizionamento syngas
 - Sintesi e purificazione metanolo.
 - Interconnecting
 - Collegamento a darsena Ugione tramite tie-in su pipeline esistenti

Waste to Methanol – Emissioni CO_{2eq} evitate

SMR + Methanol

VS.

- Metodologia di calcolo su base LCA, con analisi dell'intero ciclo di vita su base operative di 10 anni.
- Metodologia certificate da RINA ed applicabile nel contesto "Innovation Fund Large scale projects"
- Assunzioni di base:
 - Incluse emissioni CO_{2e} per e.e. (nel caso EU-IF tali emissioni vanno azzerate \rightarrow e.e. = FER)
 - Discarica come inceneritore senza cogenerazione calore
 - Incluse emissioni fugitive

Saving
$$CO_{2eq} = \frac{(CO2_{eq SMR + Methanol}) - (CO2_{eqWaste to Methanol} - CO2_{eqDiscarica})}{(CO2_{eq SMR + Methanol})} > 70\%$$

